Latest Guides

Science and Technology

A New Way to Convert Light to Electrical Energy

Published on Thursday, October 30, 2014 | 11:26 am
 
Dr. Harry Atwater. Photo courtesy Caltech

The conversion of optical power to an electrical potential is of general interest for energy applications, and is typically accomplished by optical excitation of semiconductor materials. A research team has developed a new method for this conversion, using an all-metal structure, based on the plasmon resonance in metal nanostructures.

Plasmoelectric potentials occur when metal nanostructures are excited by light at wavelengths near their resonant wavelengths, and may someday enable development of entirely new types of all-metal optoelectronic devices that can convert light into electrical energy.

This new finding could have a significant impact on the understanding of the electrochemical energy landscapes for photovoltaic, photoelectrochemical and optoelectronic devices. According to Dr. Harry Atwater, who led the study, “This work illustrates that electrical potentials can arise in metallic nanostructures in surprising ways. Although it is not clear how applications might develop from this finding, whenever you can design a optical material to produce potentials, it points toward possibilities for sensors and power converters.”

The findings are published today in the journal Science.

Those would like to discuss these findings with the principal investigator, Dr. Harry Atwater, director of the Resnick Institute for Energy and Sustainability at Caltech, please contact Deborah Williams-Hedges at debwms@caltech.edu or (626) 395-3227.

Get our daily Pasadena newspaper in your email box. Free.

Get all the latest Pasadena news, more than 10 fresh stories daily, 7 days a week at 7 a.m.

Make a comment

Your email address will not be published. Required fields are marked *

 

 

 

 

buy ivermectin online
buy modafinil online
buy clomid online
buy ivermectin online