Latest Guides

Science and Technology

Caltech Scientists: Water Flowed on Mars For Longer Than Previously Believed

Published on Wednesday, January 26, 2022 | 2:56 pm
 
Mars Reconnaissance Orbiter Context Camera image shows chloride deposits within a channel in Bosporos Planum, Mars. For scale, the largest impact crater in the scene is 1.5 km across. (Credit: NASA/JPL-Caltech/MSSS)

Researchers at Caltech in Pasadena have determined that surface water left salt minerals behind on Mars as recently as two billion years ago.

Using data collected by NASA’s Mars Reconnaissance Orbiter (MRO) over the last 15 years, the researchers – Ellen Leask and Bethany Ehlman – found that Mars once rippled with rivers and ponds billions of years ago, providing a potential habitat for microbial life.

As the planet’s atmosphere thinned over time, that water evaporated, leaving the frozen desert world that MRO studies today.

Before this new information, it was commonly believed that Mars’ water evaporated about three billion years ago. Leask and Ehlman said they’ve found evidence that reduces that timeline significantly: their research reveals signs of liquid water on the Red Planet as recently as two to 2.5 billion years ago, meaning water flowed there about a billion years longer than previous estimates.

The findings – published in AGU Advances on Dec. 27, 2021 – center on the chloride salt deposits left behind as icy meltwater flowing across the landscape evaporated.

While the shape of certain valley networks hinted that water may have flowed on Mars recently, the salt deposits provide the first mineral evidence confirming the presence of liquid water. The discovery raises new questions about how long microbial life could have survived on Mars if it ever formed at all. On Earth, at least, where there is water, there is life.

Leask, the study’s lead author, performed much of the research as part of her doctoral work at Caltech. She and Professor Ehlmann used data from the MRO instrument called the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) to map the chloride salts across the clay-rich highlands of Mars’ southern hemisphere – terrain pockmarked by impact craters. These craters were one key to dating the salts: the fewer craters a terrain has, the younger it is. By counting the number of craters on an area of the surface, scientists can estimate its age.

MRO has two cameras that are perfect for this purpose. The Context Camera, with its black-and-white wide-angle lens, helps scientists map the extent of the chlorides. To zoom in, scientists turn to the High-Resolution Imaging Science Experiment (HiRISE) color camera, allowing them to see details as small as a Mars rover from space.

Using both cameras to create digital elevation maps, Leask and Ehlmann found that many of the salts were in depressions – once home to shallow ponds on gently sloping volcanic plains. The scientists also found winding, dry channels nearby – former streams that once fed surface runoff into these ponds. Crater counting and evidence of salts on top of volcanic terrain allowed them to date the deposits.

“What is amazing is that after more than a decade of providing high-resolution image, stereo, and infrared data, MRO has driven new discoveries about the nature and timing of these river-connected ancient salt ponds,” Ehlmann, CRISM’s deputy principal investigator, said.

Leask is now a postdoctoral researcher at Johns Hopkins University’s Applied Physics Laboratory, which leads CRISM.

The salt minerals were first discovered 14 years ago by NASA’s Mars Odyssey orbiter, which launched in 2001. MRO, which has higher-resolution instruments than Odyssey, launched in 2005 and has been studying the salts, among many other features of Mars, ever since. Both are managed by NASA’s Jet Propulsion Laboratory in Pasadena.

“Part of the value of MRO is that our view of the planet keeps getting more detailed over time,” Leslie Tamppari, the mission’s deputy project scientist at JPL, said. “The more of the planet we map with our instruments, the better we can understand its history.”

Get our daily Pasadena newspaper in your email box. Free.

Get all the latest Pasadena news, more than 10 fresh stories daily, 7 days a week at 7 a.m.

Make a comment

Your email address will not be published. Required fields are marked *

 

 

 

 

buy ivermectin online
buy modafinil online
buy clomid online
buy ivermectin online